The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere
نویسنده
چکیده
The chromosphere is the site of weak emission lines characterizing the flash spectrum observed for a few seconds during a total eclipse. This layer of the solar atmosphere is known to possess an opaque Hα emission and a great number of spicules, which can extend well above the photosphere. A stunning variety of hydrogen emission lines have been observed in this region. The production of these lines has provided the seventeenth line of evidence that the Sun is comprised of condensed matter (Robitaille P.M. Liquid Metallic Hydrogen II: A critical assessment of current and primordial helium levels in Sun. Progr. Phys., 2013, v. 2, 35–47). Contrary to the gaseous solar models, the simplest mechanism for the production of emission lines is the evaporation of excited atoms from condensed surfaces existing within the chromosphere, as found in spicules. This is reminiscent of the chemiluminescence which occurs during the condensation of silver clusters (Konig L., Rabin I., Schultze W., and Ertl G. Chemiluminescence in the Agglomeration of Metal Clusters. Science, v. 274, no. 5291, 1353–1355). The process associated with spicule formation is an exothermic one, requiring the transport of energy away from the site of condensation. As atoms leave localized surfaces, their electrons can occupy any energy level and, hence, a wide variety of emission lines are produced. In this regard, it is hypothesized that the presence of hydrides on the Sun can also facilitate hydrogen condensation in the chromosphere. The associated line emission from main group and transition elements constitutes the thirtieth line of evidence that the Sun is condensed matter. Condensation processes also help to explain why spicules manifest an apparently constant temperature over their entire length. Since the corona supports magnetic field lines, the random orientations associated with spicule formation suggests that the hydrogen condensates in the chromosphere are not metallic in nature. Spicules provide a means, not to heat the corona, but rather, for condensed hydrogen to rejoin the photospheric layer of the Sun. Spicular velocities of formation are known to be essentially independent of gravitational effects and highly supportive of the hypothesis that true condensation processes are being observed. The presence of spicules brings into question established chromospheric densities and provides additional support for condensation processes in the chromosphere, the seventh line of evidence that the Sun is comprised of condensed matter.
منابع مشابه
The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VI. Helium in the Chromosphere
Molecular hydrogen and hydrides have recently been advanced as vital agents in the generation of emission spectra in the chromosphere. This is a result of the role they play in the formation of condensed hydrogen structures (CHS) within the chromosphere (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys., 2...
متن کاملOscillations of a Giant Solar Tornado
Solar magnetic tornadoes are known to be one of the mass and energy transport mechanisms from the lower solar atmosphere into the upper layers of the solar corona. A bright spiral structure with two arms is observed using high-cadence EUV images of 171, 193 and 304 Ǻ channels of Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) on 10th of July 2011 for three hours. ...
متن کاملOne-Dimensional Electrolyzer Modeling and System Sizing for Solar Hydrogen Production: an Economic Approach
In this paper, a solar based hydrogen production in the city of Tehran, the capital of Iran is simulated and the cost of produced hydrogen is evaluated. Local solar power profile is obtained using TRNSYS software for a typical parking station in Tehran. The generated electricity is used to supply power to a Proton Exchange Membrane (PEM) electrolyzer for hydrogen production. Dynamic nature of s...
متن کاملThermodynamic analysis of a novel solar water heating system during low sun radiation in Iran
This paper reports a plenary thermodynamic model of a novel solar system for water heating in buildings. Energy and exergy analyses are used to characterize the exergy destruction rate in any component and calculate system overall efficiency. The system consists of a solar evaporator, a heat exchanger to produce hot water, and an auxiliary pump. A computer simulation program using EES software ...
متن کاملar X iv : a st ro - p h / 98 07 17 5 v 1 1 6 Ju l 1 99 8 The Height Structure of the Solar Atmosphere from the EUV Perspective
Received ; accepted – 2 – ABSTRACT We investigate the structure of the solar chromosphere and transition region using full Sun images obtained with the Extreme Ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO) spacecraft. The limb seen in the EIT coronal images (taken in lines of Fe IX/X at 171Å, Fe XII at 195Å and Fe XV at 284Å) is an absorption limb pred...
متن کامل